Counting Palindromic Binary Strings Without r-Runs of Ones
نویسنده
چکیده
A closed-form expression is derived for the enumeration of all palindromic binary strings of length n > r having no r-runs of 1’s, in terms of the r-Fibonacci sequence. A similar closed-form expression for the number of zeros contained in all such palindromic binary strings is derived in terms of the number of zeros contained in all binary strings having no r-runs of 1’s.
منابع مشابه
Binary Strings Without Odd Runs of Zeros
We look at binary strings of length n which contain no odd run of zeros and express the total number of such strings, the number of zeros, the number of ones, the total number of runs, and the number of levels, rises and drops as functions of the Fibonacci and Lucas numbers and also give their generating functions. Furthermore, we look at the decimal value of the sum of all binary strings of le...
متن کاملEnumerating Binary Strings without r-Runs of Ones
The number of binary strings of length n containing no substrings consisting of r consecutive ones is examined and shown to be given in terms of a well known integer sequence namely, the r-Fibonacci sequence. In addition, difference equations for the number of zeros and the total number of runs within these binary strings are derived. Mathematics Subject Classification: Primary 11B39, Secondary...
متن کاملUnique Tournaments and Radar Tracking
The sequence counting the number of unique tournaments with n people is the same as the sequence counting non-tracking binary strings corresponding to n − 2 radar observations with the tracking rule “3 out of 5 with loss 2.” This fact allows us to build a bijection between unique tournaments and non-tracking binary strings.
متن کاملOn the Enumeration of Non-crossing Pairings of Well-balanced Binary Strings
A non-crossing pairing on a binary string pairs ones and zeroes such that the arcs representing the pairings are non-crossing. A binary string is well-balanced if it is of the form 11011202 . . . 1r0r . In this paper we establish connections between non-crossing pairings of well-balanced binary strings and various lattice paths in plane. We show that for well-balanced binary strings with a1 ≤ a...
متن کاملFast Generation of Fibonacci Permutations
In 1985, Simion and Schmidt showed that |Sn(τ3)|, the cardinality of the set of all length n permutations avoiding the patterns τ3 = {123, 213, 132} is the Fibonacci numbers, fn+1. They also developed a constructive bijection between the set of all binary strings with no two consecutive ones and Sn(τ3). In May 2004, Egge and Mansour generalized this SimionSchmidt counting result and showed that...
متن کامل